Name:	Key	

Unit 3: Powers and Exponents

Day	Торіс	Assignment

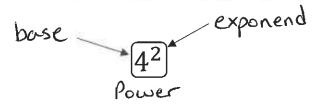
Test Day: ______

3.1 - Using Exponents to Describe Numbers

Exponential Form: A shorter way of writing <u>repeated</u> multiplication, using a base and an exponent.

- 5×5 in exponential form is 5×2
- The above is read as "5 to the power of 2" or "5 squared".

Power: An expression made up of a base and an exponent.



Base: The number in a power that you multiply. by itself.

Exponent: Tells you the number of times that the base is multiplied by itself.

• In 4^3 , 4 is multiplied by itself 3 times: $4^3 = 4 \times 4 \times 4$

Example 1: Write as a Power in Exponential Form then Evaluate

a)
$$2 \times 2 \times 2 \times 2$$
 4 factors of 2.
= 2^4
= 16

$$= (-3)^4$$

= 81

$$= 81$$
c) $\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)$
3 factors of $\left(\frac{1}{2}\right)$

$$= (\frac{1}{2})^3 = \frac{1}{8}$$

d)
$$n \times n \times n \times n \times n$$
 5 factors of n .

= n^5

Be careful with **NEGATIVE bases, notice the difference between:

base =
$$4$$
 -4^2
exponent = 2 = $-(4^2)$
= $-(4 \times 4)$
= -16
Example 2: Evaluate each Power

a)
$$9^{2}$$

= 9×9

= $-(3^{2})$

= $-(3^{2})$

= $-(3^{2})$

= $-(3 \times 3) = -9$

c) $(-2)^{4}$

= $(-2) \times (-2) \times (-2) \times (-2)$

= $-(-3) \times (-5) \times (-5)$

= $(-5) \times (-5) \times (-5)$

Practice: Textbook pg. 79/# 1-3,5-7,9,12,16

$$(-4)^2$$
 bose = (-4)
exponent = 2
= (-4)×(-4)
= 16.

3.2 - Exponent Laws

Example 1: Multiplying Powers with the Same Base

Rule: When multiplying powers with the same base, we can ADD the exponents.

$$a^m \times a^n = a^{m+n}$$

Example 2: Dividing Powers with the Same Base

Rule: When dividing powers with the same base, we can SUBTRACT the exponents.

$$a^m \div a^n = a^{m-n}$$

a)
$$5^{8} \div 5^{3}$$

= $5^{8} \cdot 5^{3}$ = $5^{8} \cdot 5^{3} = \frac{5 \times 5 \times 5}{5 \times 5 \times 5} \times 5 \times 5}$
= 5^{5} = 5^{5}

Example 3: Raising a Power to Another Power

Rule: When a power is raised to another power, we can MULTIPLY the exponents.

$$(a^m)^n = a^{mn}$$

a)
$$(2^3)^2$$

$$= \lambda^{3 \cdot 2}$$

$$= (2^3)^2 = (2^3) \times (2^3)$$

$$= (2 \times 2 \times 2) \times (2 \times 2 \times 2)$$

$$= 2^6$$

$$= 2^6$$

Give it a Try: Use Exponent Rules to Write as a Single Power. Do not Evaluate

a)
$$4^{3} \times 4^{5}$$

= 4^{3+5}
= 4^{8}

$$c) 8^{5} \div 8^{4}$$

$$= 8^{5} - 4$$

$$= 8^{1}$$

e)
$$(3^2)^4$$

= $3^{2.4}$
= 3^8

b)
$$\left(\frac{1}{3}\right)^5 \left(\frac{1}{3}\right)^6$$

$$= \left(\frac{1}{3}\right)^{5+6}$$

$$= \left(\frac{1}{3}\right)^{11}$$

$$d) \frac{(-4)^{3}}{(-4)^{2}}$$

$$= (-4)^{3} - \lambda$$

$$= (-4)^{1}$$

f)
$$(y)^3 \times (y)^5$$

= y^{3+5}
= y^8

Give it a Try: Use Exponent Rules to Write as a Single Power, then Evaluate

b)
$$\left(\frac{1}{2}\right)^{2} \left(\frac{1}{2}\right)^{4}$$

$$= \left(\frac{1}{2}\right)^{2+4}$$

$$= \left(\frac{1}{2}\right)^{6} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{64}$$

$$d) \frac{(6)^{10}}{(6)^{8}}$$

$$= (6)^{10-8}$$

$$= (6)^{2}$$

$$= (6)^{2}$$

$$= (6)^{2}$$

$$= (6)^{2}$$

$$= (6)^{2}$$

$$= (6)^{2}$$

$$= (6)^{2}$$

e)
$$((-3)^2)^2$$

= $(-3)^2$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$
= $(-3)^4$

Rule: When a product is raised to a power, we can distribute the power to each factor in the product.

$$(ab)^m = a^m \times b^m$$

a)
$$(3 \times 2)^{2}$$

= $3^{2} \times 2^{2}$
= 9×4
= 36
(3 \times 2)^{2} = $(3 \times 2) \times (3 \times 2)$
= $3^{2} \times 2^{2}$

Example 5: Raising a Quotient to a Power

Rule: When a quotient is raised to a power, we can distribute the power to both the numerator and the denominator of the quotient.

$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$

$$= \frac{2^{3}}{3^{3}} \qquad \left(\frac{2}{3}\right)^{3} = \left(\frac{2}{3}\right) \times \left(\frac{$$

Math 9

Name:
$$\frac{\text{key}}{a^n} = a^{n-n} = a^n = 1$$

Rule: All numbers (except zero) raised to the power of zero equal one.

$$a^0 = 1$$

Give it a Try: Use Exponent Rules to Simplify, then Evaluate

a)
$$(2 \times 3)^4$$

$$= 2^4 \times 3^4 \times 81$$

$$= 16 \times 81 \times 1280$$

$$= 1296 \times 1296$$

a)
$$(2 \times 3)^4$$

= $2^4 \times 3^4$

= 16×81

= 16×81

= 16×35

Exponent Laws		
Multiplying Powers	$a^m \times a^n = a^{m+n}$	
Dividing Powers	$a^m \div a^n = a^{m-n}$	
Power of a Power	$(a^m)^n = a^{mn}$	
Power of a Product	$(ab)^m = a^m \times b^m$	
Power of a Quotient	$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$	
Zero Exponent	$a^{0} = 1$	

3.3 - Order of Operations with Exponents

Coefficient: A number that multiplies an expression.

• In $-5(4)^2$, the coefficient is -5

Example 1: Evaluate Powers with Coefficients

a)
$$3(2)^{4}$$

= 3×2^{4}
= $3 \times 2 \times 2 \times 2 \times 2 = 48$
= 48
c) -4^{4}

Example 2: Evaluate Expressions with Powers

a)
$$4^{2}-8 \div 2 + (-3^{2})$$

= $16-8 \div 2 + (-9)$
= $16-4-9$
= $16-13$
= 3

$$c)8(5+2)^{2}-12+2^{2}$$

$$= 8(7)^{2}-12+4$$

$$= 8(49)-3$$

$$= 392-3 = 389$$

Practice: Textbook pg. 91/#

b)
$$-3(-5)^2$$
 $(-5)^3 = (-5)(-5)$
= $-3(25)$
= -75

d)
$$6(7)^0$$
 $(7)^0 = 1$

BEDMAS!

b)
$$-2(-15-4^2) + 4(2+3)^3$$

$$= -2(-15-16) + 4(5)^3$$

$$= -2(-31) + 4(125)$$

$$= 62 + 500$$

 $= 562$

d)
$$-[2+3(2^3+4^2)]$$

$$= - [2+3(8+16)]$$

$$= -[2 + 3(24)]$$

$$=-[2+72]$$

3.4 - Using Exponents to Solve Problems

Example 1: Use Formulas to Solve Problems

Write an expression using exponents to solve each problem.

a) What is the surface area of a cube with an edge length of 4cm?

The surface area of a cube is
$$5A = 65^2$$

If
$$s=4$$

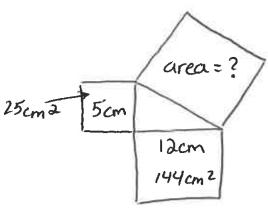
 $5A = 6(4)^{2}$
 $= 6(16)^{2}$

The surface area is 96 cm2

= 96

b) Three squares are attached to a right triangle. Find the area of the square attached to the hypotenuse in the diagram.

$$a^{2} + b^{2} = c^{2}$$
 $(5)^{2} + (12)^{2} = c^{2}$
 $25 + 144 = c^{2}$
 $169 = c^{2}$



The area of the square attached to the hypotenuse is 169 cm².

c) A circle is inscribed in a square with a side length of 20cm. What is the area of the shaded region?

Area of shoded region = Area of square
- Area of circle

Asquare = 5^2 = 20^2

Acircle = TTr2

$$= \pi(10)^{2}$$

$$= \pi(100)$$

Ashaded region ≈ 400 - 314 = 86 cm²

$$r = \frac{20cm}{2}$$

Example 2: Develop a Formula to Solve a Problem

A dish holds 100 bacteria. Under ideal conditions, the bacteria double in number every hour. How many bacteria will be present after each number of hours?

- a) 1 hour
- b) 5 hours
- c) n hours
- a) After 1h, the number doubles.

100 x2 = 200 bacteria.

b) After 5h, the number doubles five times.

100 x 2 x 2 x 2 x 2 x 2

=
$$100(a^5)$$
 = $100(3a)$ = 3200 bacteria.

C) After n hours, the number doubles n times.

Number of bacteria = 100 (2")

Practice: Textbook pg. 98/# 1-3,5,10