Name: Key

# 4.1 - Introduction to Polynomials

**Algebraic Expression**: A mathematical phrase that combines numbers and variables connected by mathematical operations.

**Polynomial**: An expression with one or more terms separated by <u>addition</u> or <u>subtraction</u>.

- **Monomial**: A polynomial with one term, for example -3x
- **Binomial**: A polynomial with two terms, for example  $5\alpha + 7b$ .
- **Trinomial**: A polynomial with three terms, for example  $\frac{2m^2+3m-8}{}$ .

**Variable**: A symbol used to represent an <u>Unknown</u> number or quantity.

**Term**: A single number, or variable, or an expression formed by the product of numbers and variables.

**Coefficient**: The number part of a term that is <u>multiplied</u>. by the variable.

Constant: A term with no variable.

### Degree:

- **Degree (of a term)**: The <u>SUM</u> of the exponents on the variables in a single term.
- **Degree (of a polynomial)**: The value of the highest-degree term in a polynomial.

## **Example 1: Identify Coefficients and Variables**

In the table below, identify the coefficient and variable(s) for each expression.

| Expression  | Coefficient | Variable(s) |
|-------------|-------------|-------------|
| 25 <i>x</i> | 25          | X           |
| $-4.9t^2$   | -49         | t           |
| lw          | 1           | $l, \omega$ |
| 2.5         | 2.5         | none.       |

Name: <u>Ley</u>

## **Example 2: Identify the Degree of a Term**

For each term in the table, state the degree.

| Term      | Degree |
|-----------|--------|
| $5x^2$    | a      |
| $-4xy^2$  | 3      |
| $a^3bc^2$ | 6      |
| 4         | 0      |

degree = 
$$1 + \lambda = 3$$
  
degree =  $3 + 1 + \lambda = 6$ 

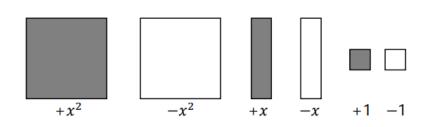
## **Example 3: Classify Polynomials**

Classify each polynomial by the number of terms, polynomial type, and degree.

| Expression             | Number of<br>Terms | Polynomial Type      | Degree |
|------------------------|--------------------|----------------------|--------|
| $5w^2$                 |                    | monomial             | a      |
| 6 <i>y</i> – 2         | 2                  | binomial             |        |
| $3x^2 - 9x^1y^1 + y^2$ | 3                  | trinomial            | 2      |
| m' + m'n' - 3n + 5     | 4                  | four-term polynomial | 2      |
| 124                    |                    | monomial             | 0      |

### **Algebra Tiles**

We can use algebra tiles to model algebraic expressions.



\* Textbook uses colours for t've tiles and white for -'ve tiles.

### **Example 4: Model Each Expression with Algebra Tiles**

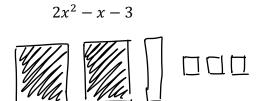




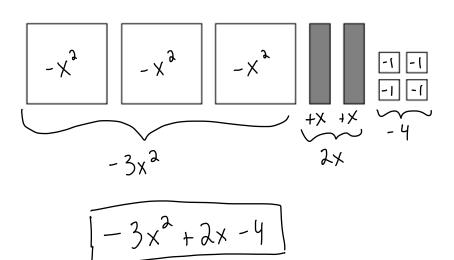








# **Example 6: Identify the expression from Algebra Tiles**



Practice: Textbook pg. 112/# | acef, 2-7, 9, 10, 14, 16

# 4.2 - Adding and Subtracting Polynomials

**Zero Pairs**: Two tiles that represent <u>opposite</u> values.

The sum of the two tiles is 0.

Like Terms: Terms that have the same variable(s) and the same <u>exponents</u> on the variable(s).

- Constant terms are "like".
- With algebra tiles, like terms have the same shape and size.

$$\begin{bmatrix} -x^2 \\ -x^2 \end{bmatrix}$$
,  $\begin{bmatrix} x^2 \\ y \end{bmatrix}$ ,  $\begin{bmatrix} x^2 \\ -x \end{bmatrix}$ ,  $\begin{bmatrix} x^2 \\ -x \end{bmatrix}$ 

## **Example 1: Identifying Like Terms**

Identify and collect the like terms for the following polynomials.

a) 
$$(-3x) + (2x^2) + (x) - 4 + (x^2) + 5$$

b) 
$$4x^2 - 3x + 1 - 3 + 2x^2 + x$$

$$2x^{2} + x^{2} - 3x + x + 4 + 5$$

$$2x^{2} + x^{2} - 3x + x + 4 + 5$$
  $4x^{2} + 2x^{2} - 3x + x + 1 - 3$ 

$$= 3x^2 - 2x + 9$$

$$= 6x^{2} - 2x - 2.$$

# **Example 2: Add Polynomials**

What is the sum of each pair of polynomials?

a) 3x + 6 and 2x + 1

| Method 1: Use a model                 | Method 2: Solve algebraically                                |
|---------------------------------------|--------------------------------------------------------------|
| 3x + 6 2x +1                          | (3x+6)+(2x+1)<br>= $3x+2x+6+1$ * put like terms<br>together. |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | = 5x +7 * Combine like terms                                 |
| (3x+6)+(2x+1) = 5x+7                  |                                                              |

b) 
$$x^2 - 5x + 2$$
 and  $2x^2 + 5x - 3$ 

| Method 1: Use a model       | Method 2: Solve algebraically        |
|-----------------------------|--------------------------------------|
| MM [ ] [ ] [ M X 2 - 5x + 2 | $(x^{2}-5x+2)+(2x^{2}+5x-3)$         |
| W                           | $= X^{2} + 2x^{2} - 5x + 5x + 2 - 3$ |
|                             | $=3x^2-1$                            |
| Zero poirs                  |                                      |
| Wa W 0                      |                                      |
| - 3x <sup>2</sup> -1        |                                      |

c)
$$(2x + 3)$$
 and $(4x-3)$ 

| Method 1: Use a model | Method 2: Solve algebraically                                                  |
|-----------------------|--------------------------------------------------------------------------------|
| 2x+3                  | $(\lambda x + 3) + (4x - 3)$<br>= $2x + 4x + 3 - 3$<br>= $2x + 4x$<br>= $6x$ . |
| (2x+3)+(4x-3) = 6x    |                                                                                |

# **Example 3: Subtract Polynomials**

Simplify the following algebraic expressions.

a) 
$$(4x + 3) - (x - 1)$$

| Method 1: Add the opposite using algebra tiles | Method 2: Solve algebraically  |
|------------------------------------------------|--------------------------------|
| (4x+3)+(-x+1)                                  | (4x+3)+(-x+1)                  |
| 4x+3 -x+1                                      | = 4x - x + 3 + 1<br>= $3x + 4$ |
| FER ZERO                                       |                                |
| 377 8888                                       |                                |

$$(4x+3)-(x-1)=3x+4$$

b) 
$$(2x^2 - 2x + 3) - (3x^2 - 4x + 4)$$

| Method 1: Add the opposite using algebra tiles | Method 2: Solve algebraically                    |
|------------------------------------------------|--------------------------------------------------|
| $(2x^{2}-2x+3)+(-3x^{2}+4x-4)$                 | (2x <sup>2</sup> -2x+3)+(-3x <sup>2</sup> +4x-4) |
|                                                | $=2x^{2}-3x^{2}-2x+4x+3-4$                       |
|                                                | $= - \times^{2} + \lambda \times - 1$            |
| Zero pairs                                     |                                                  |
| $= \boxed{} \boxed{} = -x^2 + 2x - $           |                                                  |

c) 
$$(5x+4)-(2x+1)$$

| Method 1: Add the opposite using algebra tiles | Method 2: Solve algebraically |
|------------------------------------------------|-------------------------------|
| (5x+4)+(-2x-1)                                 | (5x+4)+(-2x-1)                |
|                                                | = 5x - 2x + 4 -1              |
| Zero pairs                                     | = 3x + 3                      |
|                                                |                               |
| = 3× +3                                        |                               |

### **Example 4: Model and Solve Problems with Polynomials**

The table shows the costs involved to rent a banquet hall.

| Charge Type     | Fixed Cost (\$) | Cost Per Person (\$) |
|-----------------|-----------------|----------------------|
| Banquet Hall    | 1500            | 0                    |
| Service Charges | 0               | 5                    |
| Food Costs      | 500             | 45                   |
| Drink Costs     | 100             | 20                   |

a) What is the cost to hold a banquet for 200 people?

$$C = 1500 + 5(200) + 500 + 45(200) + 100 + 20(200)$$

$$= 1500 + 1000 + 500 + 9000 + 100 + 4000$$

$$= $16,100$$

b) Write an expression for each charge type for *n* people.

c) Write an expression to rent the banquet hall for n people. Simplify the polynomial.

$$C = 1500 + 5n + 500 + 45n + 100 + 20n$$
$$= 2100 + 70n$$

d) Verify that your expression works by using it to determine the cost of a banquet for 200 people.

$$((200) = 2100 + 70(200)$$
  
=  $2100 + 14,000$   
=  $16,100$ 

Practice: Textbook pg. 123/# 1,3,4,6,7ace,9,11,13

Name: Key

### 4.3 - Multiplying and Dividing Monomials

### **Multiplying Monomials**

**Recall:** Exponent laws.

$$3^2 \times 3^4 = 3^{2+4} = 3^6$$

Now, if the bases were a variable we have,

$$x^2 \times x^4 = \frac{\chi^{\lambda + 4}}{\chi^2} = \frac{\chi^6}{\chi^6}$$

To multiply two monomials:

- Multiply the coefficients
- Multiply the variables, using exponent laws

When we use a model, we can think of multiplying monomials as finding the <u>area</u> of a rectangle.

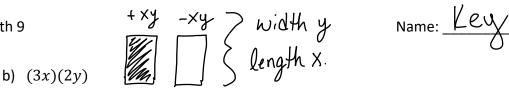
$$Area = length \times width$$

2 cm

**Example 1:** Multiply each pair of monomials.

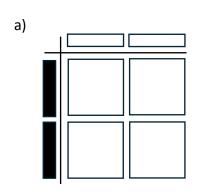
a) 
$$(5x)(2x)$$

| Method 1: Use a model                   | Method 2: Solve algebraically             |
|-----------------------------------------|-------------------------------------------|
| Man | (5x)(2x)<br>5·2·x·x<br>= 10x <sup>2</sup> |

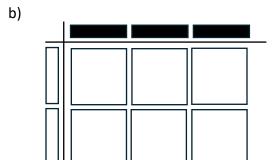


| Method 1: Use a model                      | Method 2: Solve algebraically                           |
|--------------------------------------------|---------------------------------------------------------|
| Fun and and and and and and and and and an | $(3x)(2y)$ $= 3 \cdot 2 \cdot x \cdot y$ $= 6 \times y$ |

**Example 2:** Write a monomial multiplication statement for each set of algebra tiles.



$$(\lambda x)(-\lambda x) = -4x^{\lambda}$$



$$(-2x)(3x) = -6x^{2}$$

**Example3:** Determine the product of each pair of monomials.

b) 
$$(3y)(7y)$$
  
=  $3 \cdot 7 \cdot y \cdot y$   
=  $2 \cdot y^{2}$   
d)  $(6m)(-0.2m)$   
=  $6 \cdot (-0.2) \cdot m \cdot m$   
=  $-1 \cdot 2mn$ 

#### **Dividing Monomials**

**Recall:** Exponent laws

$$\frac{2^5}{2^2} = \lambda^{5-\lambda} = \lambda^3$$

Now, if the bases were a variable we have,

$$\frac{x^5}{x^2} = \frac{x^5 - \lambda}{x^2} = \frac{x^3}{x^3}$$

To divide two monomials:

- Divide the coefficients
- Divide the variables, using exponent laws

When we use a model, we can think as if we know the area of the  $\underline{\text{rectargle}}$  and one of the side lengths and we need to find the missing side length by dividing.

**Example 4:** Divide each pair of monomials.

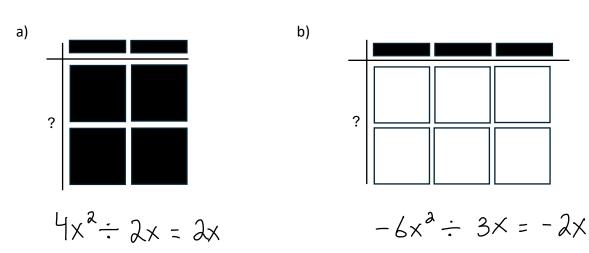
a) 
$$(8x^2) \div (4x)$$

| Method 1: Use a model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Method 2: Solve algebraically                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| www was weed weed with the state of the stat | $(8x^{2}) \div (4x)$ $= (8 \div 4)(x^{2} \div x)$ $= 2x$ |

b) 
$$\frac{-4xy}{2y}$$

| Method 1: Use a model | Method 2: Solve algebraically |
|-----------------------|-------------------------------|
| Muller Wall           | - Xxy                         |
|                       | = - 2 ×                       |
| = - 2×                |                               |

**Example 5:** Write a monomial division statement for each set of algebra tiles.



**Example 6:** Determine the quotient of each pair of algebra tiles.

a) 
$$\frac{y6x^2}{z/8x}$$

b)  $\frac{y6x^2}{z/7}$ 
 $= -2x$ 
 $= 5x$ 

c)  $\frac{-5xy}{z/7}$ 
 $= 3$ 

d)  $\frac{12xy}{8x}$ 
 $= 3$ 
 $= \frac{12xy}{8x}$ 
 $= 3$ 
 $= \frac{12xy}{8x}$ 
 $= 3$ 
 $= \frac{12xy}{2x}$ 
 $= -7.1m$ 

### **Example 7:** Apply monomial multiplication.

A Triangle has a base of 12x cm and a height of 3.4x cm. What is the area of the triangle?

$$A = \frac{b \times h}{2}$$

$$A = \frac{(12x)(3.4x)}{2} = \frac{12 \cdot 3.4 \cdot x \cdot x}{2}$$

$$= 6 \cdot 3.4 \cdot x \cdot x$$

$$= 20.4 \times x^{2} \text{ cm}^{2}$$

### Example 8: Apply monomial division.

What is the missing dimension of the figure?

$$A = l \times \omega$$

$$W = \frac{A}{l}$$

$$W = \frac{l \times x}{s \times x}$$

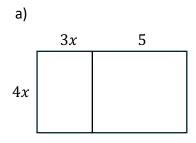
$$W = 3 \times \omega$$
The missing dimension is  $3 \times 1$ .

$$A = 15x^2$$

$$5x$$

## 4.4 - Multiplying Polynomials by Monomials

Example 1: What polynomial multiplication statement is represented by each area model?



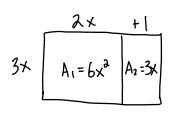
$$(4x)(3x + 5)$$

$$(5m)(2.1m+7)$$

5m

**Example 2:** Use an area model to determine product.

a) 
$$(3x)(2x + 1)$$

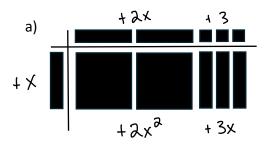


$$A = 6x^{2} + 3x$$

b) 
$$(4d + 3)(3d)$$

$$3d A_1 = 12d^2 A_2 = 9d$$

**Example 3:** Determine the polynomial multiplication statement shown by the algebra tiles.



$$(2x+3)(x) = 2x^{2}+3x$$



$$(-2x)(2x-3) = -4x^{2} + 6x$$

**Example 4:** Use a model to expand each expression.

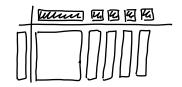
a) 
$$(4x + 1)(2x)$$

$$4 \times + 1$$

$$A_1 = 8 \times^2 \qquad A_2 = 2 \times$$

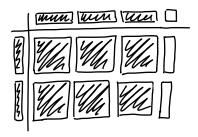
$$A = 8 \times^{2} + 2 \times$$

b) 
$$(-x)(x+4)$$



$$(-x)(x+4) = -x^{2}-4x$$

c) 
$$(2x)(3x-1)$$



$$(2x)(3x-1) = 6x^2 - 2x$$

Distributive Property: When multiplying a monomial by a polynomial, multiply the MONOWICL by each term in the polynomial.

$$a(x+y) = ax + ay$$

**Example 5:** Use the distributive property to multiply polynomials by monomials.

a) 
$$4(3x-5)$$

b) 
$$-7y(2x - 4y)$$

c) 
$$2x(6x^2 + 3x - 1)$$

$$= 12x - 20$$

= 
$$(-7y)(2x) - (-7y)(4y) = (2x)(6x^2) + (2x)(3x) - (2x)(1)$$

$$=-14xy+28y^2$$

$$= (\lambda_{x})(\beta_{x}^{\lambda}) + (\lambda_{x})(3_{x}) - (\lambda_{x})(1)$$

$$= |\lambda x^3 + 6x^2 - \lambda x$$

**Give it a Try:** Use the distributive property to multiply the polynomials.

a) 
$$(4m+1)(3m)$$

b) 
$$(-4x)(2x-3)$$

c) 
$$(\frac{2}{3}m+4)(-9m)$$

$$= (4m)(3m) + (1)(3m) \qquad (-4x)(2x) - (-4x)(3)$$

$$(\frac{2}{3}m)(-9m) + (4)(-9m)$$

$$= -8x^{\lambda} - (-1\lambda x)$$

$$= -6m^{2} - 36m$$

**Example 6:** The length of a cement pad on a playground in 3m longer than the width. The width is 5x m.

a) Write an expression for the area of the cement pad.

b) If x = 2 m, what is the area of the cement pad?

$$A = 25(a)^{a} + 15(a)$$

$$= 25(4) + 30$$

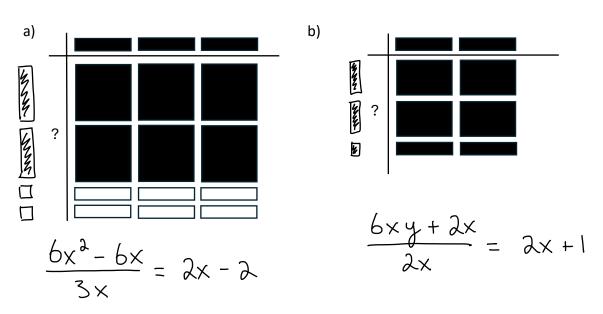
$$= 100 + 30$$

$$= 130 \text{ m}^{2}$$

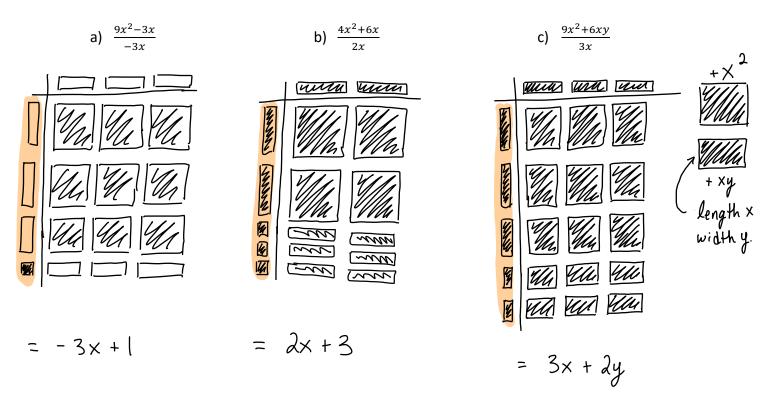


# 4.5 - Dividing Polynomials by Monomials

**Example 1:** What polynomial division statement is represented by the algebra tiles? Determine the quotient.



**Example 2:** Use algebra tiles to divide each of the following expressions.



 When dividing a polynomial by a monomial, divide each term in the <u>Λυπεταίος</u> by the denominator and apply the exponent laws.

**Example 3:** Divide the following expressions.

a) 
$$\frac{15x^{2}-20x}{5x}$$
b) 
$$\frac{16m^{2}+20mn}{4m}$$

$$= \frac{1/5x^{2}}{8/x} - \frac{2/5x}{8/x}$$

$$= \frac{1/5x^{2}}{8/x} - \frac{1/5x}{8/x}$$

$$= \frac{1/5x^{2}}{8/x} - \frac{1/5x^{2}}{8/x}$$

$$= \frac{1/5x^{2}}{8/x} - \frac{1/5x$$

e) 
$$\frac{9c^2 - 12c + 6}{-3}$$
  
=  $\frac{3}{12}c^2 - \frac{14}{12}c + \frac{3}{12}c + \frac{3}{12$ 

**Example 6:** You are decorating the bulletin board in your classroom with pictures of your classmates. Each picture covers an area of 4x cm<sup>2</sup>. The area of the board is  $4x^2 + 16x$  cm<sup>2</sup>. Write an expression to represent how many pictures are required to cover the board.

Area of board - Area of picture

$$= \frac{4x^{2} + 1bx}{4x}$$

X + 4 pictures are required to cover the board.

**Example 7:** A rectangular lawn has a width of 3x m. The area is  $15x^2 + 45x$  m<sup>2</sup>. You wish to put a fence around the lawn.

a) What is an expression to represent the perimeter of the lawn?

b) You are placing a post every 2 m. Find an expression to represent how many posts will be required.

# of posts = 
$$\frac{16x + 30}{2}$$
  
=  $\frac{16x}{2} + \frac{30}{2}$   
=  $8x + 15$   
 $8x + 15$  posts will be required.

Practice: Textbook pg. 146/# 1-3, 6-9, 10ab, 12, 13